Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B.
نویسندگان
چکیده
Virus-induced membrane fusion can be subdivided into three phases defined by studies of class I and class II fusion proteins. During Phase I, two membranes are brought into close apposition. Phase II marks the mixing of the outer membrane leaflets leading to formation of a hemifusion intermediate. A fusion pore stably forms and expands in Phase III, thereby completing the fusion process. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins to complete membrane fusion, but none has been defined as class I or II. Therefore, we investigated whether HSV-1-induced membrane fusion occurred following the same general phases as those described for class I and II proteins. In this study we demonstrate that glycoprotein D (gD) and the glycoprotein H and glycoprotein L complex (gHL) mediated lipid mixing indicative of hemifusion. However, content mixing and full fusion required glycoprotein B (gB) to be present along with gD and gHL. Our results indicate that, like class I and II fusion proteins, fusion mediated by HSV-1 glycoproteins occurred through a hemifusion intermediate. In addition, both gB and gHL are probably directly involved in the fusion process. From this, we propose a sequential model for fusion via HSV-1 glycoproteins whereby gD is required for Phase I, gHL is required for Phase II, and gB is required for Phase III. We further propose that glycoprotein H and gB are likely to function sequentially to promote membrane fusion in other herpesviruses such as Epstein-Barr virus and human herpesvirus 8.
منابع مشابه
Reevaluating herpes simplex virus hemifusion.
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a "hemifusion" intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enl...
متن کاملDetection of Herpes Simplex Virus Antibodies Using the Whole Virus and Recombinant gD
Background and Aims: Herpes simplex virus type 1 (HSV1) remains a potentially serious health problem world wide. All infected people, including asymptomatic ones, are potential sources for virus transmission. Virus envelope contains at least 13 glycoproteins, which glycoprotein D is the major target of immune responses. The aim of this study was development of a specific method that is a more...
متن کاملImmunogenicity and Efficacy of Baculovirus Derived Glycoprotein D of Herpes Simplex Virus Type-I in Mice
متن کامل
The Effect of Cumin Seed Extracts against Herpes Simplex Virus Type 1 in Vero Cell Culture
Background: Cumin (Cuminum cyminum L. [family Apiaceae]) seed essential oil is reported to have antiseptic activity. Until now the antiviral properties of cumin seed extracts on viruses such as herpes simplex virus-1 (HSV-1) have not been studied. The objective of this study was to investigate the in vitro effects of aqueous, methanolic and hydroalcoholic extracts of cumin seed on HSV-1 growth ...
متن کاملConstruction of an Eukaryotic Expression Vector Encoding Herpes Simplex Virus Type 2 Glycoprotein D and In Vitro Expression of the Desired Protein
To construct of an eukaryotic expression vector encoding herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2), an Iranian isolate of HSV-2 was propagated in HeLa cell line and its DNA was extracted and used as template in polymerase chain reactions (PCR), to amplify gD2 gene. Primers were designed and the restriction enzyme sites for EcoRI and XhoI were considered at their 5′ ends respectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2007